Book Image

Julia 1.0 Programming Complete Reference Guide

By : Ivo Balbaert, Adrian Salceanu
Book Image

Julia 1.0 Programming Complete Reference Guide

By: Ivo Balbaert, Adrian Salceanu

Overview of this book

Julia offers the high productivity and ease of use of Python and R with the lightning-fast speed of C++. There’s never been a better time to learn this language, thanks to its large-scale adoption across a wide range of domains, including fintech, biotech and artificial intelligence (AI). You will begin by learning how to set up a running Julia platform, before exploring its various built-in types. This Learning Path walks you through two important collection types: arrays and matrices. You’ll be taken through how type conversions and promotions work, and in further chapters you'll study how Julia interacts with operating systems and other languages. You’ll also learn about the use of macros, what makes Julia suitable for numerical and scientific computing, and how to run external programs. Once you have grasped the basics, this Learning Path goes on to how to analyze the Iris dataset using DataFrames. While building a web scraper and a web app, you’ll explore the use of functions, methods, and multiple dispatches. In the final chapters, you'll delve into machine learning, where you'll build a book recommender system. By the end of this Learning Path, you’ll be well versed with Julia and have the skills you need to leverage its high speed and efficiency for your applications. This Learning Path includes content from the following Packt products: • Julia 1.0 Programming - Second Edition by Ivo Balbaert • Julia Programming Projects by Adrian Salceanu
Table of Contents (18 chapters)

Type annotations

As we saw in Chapter 2, Variables, Types, and Operations, type-annotating a variable is done with the :: operator, such as in the function definition function write(io::IO, s::String) #... end, where the parameter io has to be of type IO, and s of type String. To put it differently, io has to be an instance of type IO, and s an instance of type String. The :: operator is, in fact, an assertion that affirms that the value on the left is of the type on the right. If this is not true, a typeassert error is thrown. Try this out in the REPL:

# see the code in Chapter 6\conversions.jl: 
(31+42)::Float64

We get an ERROR: TypeError: in typeassert, expected Float64, got Int64 error message.

This is, in addition to the method specialization for multiple dispatch, an important reason why type annotations are used in function signatures.

The operator :: can also...