Book Image

Advanced Blockchain Development

By : Imran Bashir, Narayan Prusty
Book Image

Advanced Blockchain Development

By: Imran Bashir, Narayan Prusty

Overview of this book

Blockchain technology is a distributed ledger with applications in industries such as finance, government, and media. This Learning Path is your guide to building blockchain networks using Ethereum, JavaScript, and Solidity. You will get started by understanding the technical foundations of blockchain technology, including distributed systems, cryptography and how this digital ledger keeps data secure. Further into the chapters, you’ll gain insights into developing applications using Ethereum and Hyperledger. As you build on your knowledge of Ether security, mining, smart contracts, and Solidity, you’ll learn how to create robust and secure applications that run exactly as programmed without being affected by fraud, censorship, or third-party interference. Toward the concluding chapters, you’ll explore how blockchain solutions can be implemented in applications such as IoT apps, in addition to its use in currencies. This Learning Path also highlights how you can increase blockchain scalability, and discusses the future scope of this fascinating and powerful technology. By the end of this Learning Path, you'll be equipped with the skills you need to tackle pain points encountered in the blockchain life cycle and confidently design and deploy decentralized applications.
Table of Contents (25 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
15
Blockchain - Outside of Currencies
16
Scalability and Other Challenges
Index

Ethereum virtual machine


EVM (or Ethereum virtual machine) is the Ethereum smart contracts byte-code execution environment. Every node in the network runs EVM. All the nodes execute all the transactions that point to smart contracts using EVM, so every node does the same calculations and stores the same values. Transactions that only transfer ether also require some calculation, that is, to find out whether the address has a balance or not and deduct the balance accordingly.

Every node executes the transactions and stores the final state due to various reasons. For example, if there is a smart contract that stores the names and details of everyone attending a party, whenever a new person is added, a new transaction is broadcasted to the network. For any node in the network to display details of everyone attending the party, they simply need to read the final state of the contract.

Every transaction requires some computation and storage in the network. Therefore, there needs to be a transaction...