Book Image

The Complete Rust Programming Reference Guide

By : Rahul Sharma, Vesa Kaihlavirta, Claus Matzinger
Book Image

The Complete Rust Programming Reference Guide

By: Rahul Sharma, Vesa Kaihlavirta, Claus Matzinger

Overview of this book

Rust is a powerful language with a rare combination of safety, speed, and zero-cost abstractions. This Learning Path is filled with clear and simple explanations of its features along with real-world examples, demonstrating how you can build robust, scalable, and reliable programs. You’ll get started with an introduction to Rust data structures, algorithms, and essential language constructs. Next, you will understand how to store data using linked lists, arrays, stacks, and queues. You’ll also learn to implement sorting and searching algorithms, such as Brute Force algorithms, Greedy algorithms, Dynamic Programming, and Backtracking. As you progress, you’ll pick up on using Rust for systems programming, network programming, and the web. You’ll then move on to discover a variety of techniques, right from writing memory-safe code, to building idiomatic Rust libraries, and even advanced macros. By the end of this Learning Path, you’ll be able to implement Rust for enterprise projects, writing better tests and documentation, designing for performance, and creating idiomatic Rust code. This Learning Path includes content from the following Packt products: • Mastering Rust - Second Edition by Rahul Sharma and Vesa Kaihlavirta • Hands-On Data Structures and Algorithms with Rust by Claus Matzinger
Table of Contents (29 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Linked lists


To keep track of a bunch of items, there is a simple solution: with each entry in the list, store a pointer to the next entry. If there is no next item, store null/nil/None and so on, and keep a pointer to the first item. This is called a singly linked list, where each item is connected with a single link to the next, as shown in the following diagram—but you already knew that:

What are the real use cases for a linked list though? Doesn't everyone just use a dynamic array for everything?

Consider a transaction log, a typical append-only structure. Any new command (such as a SQL statement) is simply appended to the existing chain and is eventually written to a persistent storage. Thus, the initial requirements are simple:

  • Append a command to an existing list
  • Replay every command from the beginning to the end—in that order

In other words, its a queue (or LIFO—short for Last In First Out) structure.

A transaction log

First, a list has to be defined—in Rust, lacking a null type, each item...