Book Image

The Complete Rust Programming Reference Guide

By : Rahul Sharma, Vesa Kaihlavirta, Claus Matzinger
Book Image

The Complete Rust Programming Reference Guide

By: Rahul Sharma, Vesa Kaihlavirta, Claus Matzinger

Overview of this book

Rust is a powerful language with a rare combination of safety, speed, and zero-cost abstractions. This Learning Path is filled with clear and simple explanations of its features along with real-world examples, demonstrating how you can build robust, scalable, and reliable programs. You’ll get started with an introduction to Rust data structures, algorithms, and essential language constructs. Next, you will understand how to store data using linked lists, arrays, stacks, and queues. You’ll also learn to implement sorting and searching algorithms, such as Brute Force algorithms, Greedy algorithms, Dynamic Programming, and Backtracking. As you progress, you’ll pick up on using Rust for systems programming, network programming, and the web. You’ll then move on to discover a variety of techniques, right from writing memory-safe code, to building idiomatic Rust libraries, and even advanced macros. By the end of this Learning Path, you’ll be able to implement Rust for enterprise projects, writing better tests and documentation, designing for performance, and creating idiomatic Rust code. This Learning Path includes content from the following Packt products: • Mastering Rust - Second Edition by Rahul Sharma and Vesa Kaihlavirta • Hands-On Data Structures and Algorithms with Rust by Claus Matzinger
Table of Contents (29 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Abstracting behavior with traits


From a polymorphism and code reuse perspective, it is often a good idea to separate shared behavior and common properties of types from themselves in code and only have methods that are unique to themselves. In doing so, we allow different types to relate to each other with these common properties, which allows us to program for APIs that are more general or inclusive in terms of their parameters. This means that we can accept types that have those shared properties while not being restricted to one particular type.

In object-oriented languages such as Java or C#, interfaces convey the same idea, where we can define shared behavior that many types can implement. For example, instead of having multiple sort functions, which take in a list of integer values, and other functions that take in a list of string values, we can have a single sort function that can take a list of items that implement the Comparable or Comparator interface. This allows us to pass anything...