Book Image

Ceph: Designing and Implementing Scalable Storage Systems

By : Michael Hackett, Vikhyat Umrao, Karan Singh, Nick Fisk, Anthony D'Atri, Vaibhav Bhembre
Book Image

Ceph: Designing and Implementing Scalable Storage Systems

By: Michael Hackett, Vikhyat Umrao, Karan Singh, Nick Fisk, Anthony D'Atri, Vaibhav Bhembre

Overview of this book

This Learning Path takes you through the basics of Ceph all the way to gaining in-depth understanding of its advanced features. You’ll gather skills to plan, deploy, and manage your Ceph cluster. After an introduction to the Ceph architecture and its core projects, you’ll be able to set up a Ceph cluster and learn how to monitor its health, improve its performance, and troubleshoot any issues. By following the step-by-step approach of this Learning Path, you’ll learn how Ceph integrates with OpenStack, Glance, Manila, Swift, and Cinder. With knowledge of federated architecture and CephFS, you’ll use Calamari and VSM to monitor the Ceph environment. In the upcoming chapters, you’ll study the key areas of Ceph, including BlueStore, erasure coding, and cache tiering. More specifically, you’ll discover what they can do for your storage system. In the concluding chapters, you will develop applications that use Librados and distributed computations with shared object classes, and see how Ceph and its supporting infrastructure can be optimized. By the end of this Learning Path, you'll have the practical knowledge of operating Ceph in a production environment. This Learning Path includes content from the following Packt products: • Ceph Cookbook by Michael Hackett, Vikhyat Umrao and Karan Singh • Mastering Ceph by Nick Fisk • Learning Ceph, Second Edition by Anthony D'Atri, Vaibhav Bhembre and Karan Singh
Table of Contents (27 chapters)
Title Page
About Packt
Contributors
Preface
Index

Algorithms and profiles


There are a number of different erasure plugins you can use to create your erasure-coded pool.

Jerasure

The default erasure plugin in Ceph is the Jerasure plugin, which is a highly optimized open source erasure coding library. The library has a number of different techniques that can be used to calculate the erasure codes. The default is Reed-Solomon and provides good performance on modern processors which can accelerate the instructions that the technique uses. Cauchy is another technique in the library; it is a good alternative to Reed- Solomon and tends to perform slightly better. As always, benchmarks should be conducted before storing any production data on an erasure-coded pool to identify which technique best suits your workload.

There are also a number of other techniques that can be used which all have a fixed number of M shards. If you are intending on only having two M shards, then they can be a good candidate as their fixed size means that optimizations are...