Book Image

Java: Data Science Made Easy

By : Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
Book Image

Java: Data Science Made Easy

By: Richard M. Reese, Jennifer L. Reese, Alexey Grigorev

Overview of this book

Data science is concerned with extracting knowledge and insights from a wide variety of data sources to analyse patterns or predict future behaviour. It draws from a wide array of disciplines including statistics, computer science, mathematics, machine learning, and data mining. In this course, we cover the basic as well as advanced data science concepts and how they are implemented using the popular Java tools and libraries.The course starts with an introduction of data science, followed by the basic data science tasks of data collection, data cleaning, data analysis, and data visualization. This is followed by a discussion of statistical techniques and more advanced topics including machine learning, neural networks, and deep learning. You will examine the major categories of data analysis including text, visual, and audio data, followed by a discussion of resources that support parallel implementation. Throughout this course, the chapters will illustrate a challenging data science problem, and then go on to present a comprehensive, Java-based solution to tackle that problem. You will cover a wide range of topics – from classification and regression, to dimensionality reduction and clustering, deep learning and working with Big Data. Finally, you will see the different ways to deploy the model and evaluate it in production settings. By the end of this course, you will be up and running with various facets of data science using Java, in no time at all. This course contains premium content from two of our recently published popular titles: - Java for Data Science - Mastering Java for Data Science
Table of Contents (29 chapters)
Title Page
Credits
Preface
Free Chapter
1
Module 1
15
Module 2
26
Bibliography

Link prediction


Link Prediction is the problem of predicting which links will appear in a network. For example, we can have a friendship graph in Facebook or another social network, and functionality like people you may know is an application of Link Prediction. So, we can see Link Prediction is a recommendation system for social networks.

For this problem, we need to find a dataset that contains a graph evolving over time. Then, we can consider such a graph at some point in its evolution, calculate some characteristics between the existing links, and, based on that, predict which links are likely to appear next. Since for such graphs we know the future, we can use this knowledge for evaluating the performance of our models.

There are a number of interesting datasets available, but unfortunately, most of them do not have a time associated to the edges, so it is not possible to see how these graphs developed over time. This makes it harder to test the methods, but, of course, it is possible...