Book Image

Learn Docker - Fundamentals of Docker 18.x

By : Dr. Gabriel N. Schenker
Book Image

Learn Docker - Fundamentals of Docker 18.x

By: Dr. Gabriel N. Schenker

Overview of this book

Docker containers have revolutionized the software supply chain in small and big enterprises. Never before has a new technology so rapidly penetrated the top 500 enterprises worldwide. Companies that embrace containers and containerize their traditional mission-critical applications have reported savings of at least 50% in total maintenance cost and a reduction of 90% (or more) of the time required to deploy new versions of those applications. Furthermore they are benefitting from increased security just by using containers as opposed to running applications outside containers. This book starts from scratch, introducing you to Docker fundamentals and setting up an environment to work with it. Then we delve into concepts such as Docker containers, Docker images, Docker Compose, and so on. We will also cover the concepts of deployment, orchestration, networking, and security. Furthermore, we explain Docker functionalities on public clouds such as AWS. By the end of this book, you will have hands-on experience working with Docker containers and orchestrators such as SwarmKit and Kubernetes.
Table of Contents (21 chapters)
Title Page
Packt Upsell
Contributors
Preface
Index

Why are containers important?


These days, the time between new releases of an application become shorter and shorter, yet the software itself doesn't become any simpler. On the contrary, software projects increase in complexity. Thus, we need a way to tame the beast and simplify the software supply chain.

We also hear every day how much more cyber crimes are on the rise. Many well-known companies are affected by security breaches. Highly sensitive customer data gets stolen, such as social security numbers, credit card information, and more. But not only customer data is compromised, sensitive company secrets are also stolen.

Containers can help in many ways. First of all, Gartner has found in a recent report that applications running in a container are more secure than their counterparts not running in a container. Containers use Linux security primitives such as Linux kernel namespaces to sandbox different applications running on the same computers and control groups (cgroups), to avoid the noisy neighbor problem where one bad application is using all available resources of a server and starving all other applications.

Due to the fact that container images are immutable, it is easy to have them scanned for known vulnerabilities and exposures, and in doing so, increase the overall security of our applications.

Another way we can make our software supply chain more secure when using containers is to use content trust. Content trust basically ensures that the author of a container image is who they pretend to be and that the consumer of the container image has a guarantee that the image has not been tampered with in transit. The latter is known as a man-in-the-middle (MITM) attack.

All that I have just said is of course technically also possible without using containers, but since containers introduce a globally accepted standard, it makes it so much easier to implement those best practices and enforce them.

OK, but security is not the only reason why containers are important. There are other reasons:

One of them is the fact that containers make it easy to simulate a production-like environment, even on a developer's laptop. If we can containerize any application, then we can also containerize, say, a database such as Oracle or MS SQL Server. Now, everyone who has ever had to install an Oracle database on a computer knows that this is not the easiest thing to do and it takes a lot of space away on your computer. You wouldn't want to do that to your development laptop just to test whether the application you developed really works end to end. With containers at hand, I can run a full-blown relational database in a container as easily as saying 1, 2, 3. And when I'm done with testing, I can just stop and delete the container and the database is gone without leaving a trace on my computer.

Since containers are very lean compared to VMs, it is not uncommon to have many containers running at the same time on a developer's laptop without overwhelming the laptop.

A third reason why containers are important is that operators can finally concentrate on what they are really good at, provisioning infrastructure, and running and monitoring applications in production. When the applications they have to run on a production system are all containerized, then operators can start to standardize their infrastructure. Every server becomes just another Docker host. No special libraries of frameworks need to be installed on those servers, just an OS and a container runtime such as Docker.

Also, the operators do not have to have any intimate knowledge about the internals of the applications anymore since those applications run self-contained in containers that ought to look like black boxes to the operations engineers, similar to how the shipping containers look to the personnel in the transportation industry.