Book Image

OpenCV 4 Computer Vision Application Programming Cookbook - Fourth Edition

By : David Millán Escrivá, Robert Laganiere
Book Image

OpenCV 4 Computer Vision Application Programming Cookbook - Fourth Edition

By: David Millán Escrivá, Robert Laganiere

Overview of this book

OpenCV is an image and video processing library used for all types of image and video analysis. Throughout the book, you'll work with recipes to implement a variety of tasks. With 70 self-contained tutorials, this book examines common pain points and best practices for computer vision (CV) developers. Each recipe addresses a specific problem and offers a proven, best-practice solution with insights into how it works, so that you can copy the code and configuration files and modify them to suit your needs. This book begins by guiding you through setting up OpenCV, and explaining how to manipulate pixels. You'll understand how you can process images with classes and count pixels with histograms. You'll also learn detecting, describing, and matching interest points. As you advance through the chapters, you'll get to grips with estimating projective relations in images, reconstructing 3D scenes, processing video sequences, and tracking visual motion. In the final chapters, you'll cover deep learning concepts such as face and object detection. By the end of this book, you'll have the skills you need to confidently implement a range of computer vision algorithms to meet the technical requirements of your complex CV projects.
Table of Contents (17 chapters)

Computing the fundamental matrix of an image pair

In this recipe, we will explore the projective relationship that exists between two images that display the same scene. These two images could have been obtained by moving a camera at two different locations to take pictures from two viewpoints, or by using two cameras, each of them taking a different picture of the scene. When these two cameras are separated by a rigid baseline, we use the term stereovision.

Getting ready

Let's now consider two cameras observing a given scene point, as shown in the following diagram:

We learned that we can find the image x of a 3D point X by tracing a line joining this 3D point with the camera's center. Conversely, the scene point...