Book Image

TensorFlow Reinforcement Learning Quick Start Guide

By : Kaushik Balakrishnan
Book Image

TensorFlow Reinforcement Learning Quick Start Guide

By: Kaushik Balakrishnan

Overview of this book

Advances in reinforcement learning algorithms have made it possible to use them for optimal control in several different industrial applications. With this book, you will apply Reinforcement Learning to a range of problems, from computer games to autonomous driving. The book starts by introducing you to essential Reinforcement Learning concepts such as agents, environments, rewards, and advantage functions. You will also master the distinctions between on-policy and off-policy algorithms, as well as model-free and model-based algorithms. You will also learn about several Reinforcement Learning algorithms, such as SARSA, Deep Q-Networks (DQN), Deep Deterministic Policy Gradients (DDPG), Asynchronous Advantage Actor-Critic (A3C), Trust Region Policy Optimization (TRPO), and Proximal Policy Optimization (PPO). The book will also show you how to code these algorithms in TensorFlow and Python and apply them to solve computer games from OpenAI Gym. Finally, you will also learn how to train a car to drive autonomously in the Torcs racing car simulator. By the end of the book, you will be able to design, build, train, and evaluate feed-forward neural networks and convolutional neural networks. You will also have mastered coding state-of-the-art algorithms and also training agents for various control problems.
Table of Contents (11 chapters)

Algorithms covered in this book

In Chapter 2, Temporal Difference, SARSA, and Q-Learning, we will look into our first two RL algorithms: Q-learning and SARSA. Both of these algorithms are tabular-based and do not require the use of neural networks. Thus, we will code them in Python and NumPy. In Chapter 3, Deep Q-Network, we will cover DQN and use TensorFlow to code the agent for the rest of the book. We will then train it to play Atari Breakout. In Chapter 4, Double DQN, Dueling Architectures, and Rainbow, we will cover double DQN, dueling network architectures, and rainbow DQN. In Chapter 5, Deep Deterministic Policy Gradient, we will look at our first Actor-Critic RL algorithm called DDPG, learn about policy gradients, and apply them to a continuous action problem. In Chapter 6, Asynchronous Methods – A3C and A2C, we will investigate A3C, which is another RL algorithm that uses a master and several worker processes. In Chapter 7, Trust Region Policy Optimization and Proximal Policy Optimization, we will investigate two more RL algorithms: TRPO and PPO. Finally, we will apply DDPG and PPO to train an agent to drive a car autonomously in Chapter 8, Deep RL Applied to Autonomous Driving. From Chapter 3, Deep Q-Network, to Chapter 8, Deep RL Applied to Autonomous Driving, we'll use TensorFlow agents. Have fun learning RL.