Book Image

PostgreSQL 11 Administration Cookbook

By : Simon Riggs, Gianni Ciolli, Sudheer Kumar Meesala
Book Image

PostgreSQL 11 Administration Cookbook

By: Simon Riggs, Gianni Ciolli, Sudheer Kumar Meesala

Overview of this book

PostgreSQL is a powerful, open source database management system with an enviable reputation for high performance and stability. With many new features in its arsenal, PostgreSQL 11 allows you to scale up your PostgreSQL infrastructure. This book takes a step-by-step, recipe-based approach to effective PostgreSQL administration. The book will introduce you to new features such as logical replication, native table partitioning, additional query parallelism, and much more to help you to understand and control, crash recovery and plan backups. You will learn how to tackle a variety of problems and pain points for any database administrator such as creating tables, managing views, improving performance, and securing your database. As you make steady progress, the book will draw attention to important topics such as monitoring roles, backup, and recovery of your PostgreSQL 11 database to help you understand roles and produce a summary of log files, ensuring high availability, concurrency, and replication. By the end of this book, you will have the necessary knowledge to manage your PostgreSQL 11 database efficiently.
Table of Contents (19 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
Index

Using replication slots


Replication slots allow you to define your replication architecture explicitly. They also allow you to track details of nodes even when they are disconnected. Replication slots work with both PSR and LSR, though they operate slightly differently.

Replication slots ensure that data required by a downstream node persists until the node receives it. They are crash-safe, so if a connection is lost, the slot still continues to exist. By tracking data on downstream nodes, we avoid these problems:

  • When a standby disconnects, the feedback data provided by hot_standby_feedback is lost. When the standby reconnects, it may be sent cleanup records that result in query conflicts. Replication slots remember the standby's xmin value even when disconnected, ensuring that cleanup conflicts can be avoided.
  • When a standby disconnects, the knowledge of which WAL files were required is lost. When the standby reconnects, we may have discarded the required WAL files, requiring us to regenerate...