Book Image

Mastering Azure Machine Learning

By : Christoph Körner, Kaijisse Waaijer
Book Image

Mastering Azure Machine Learning

By: Christoph Körner, Kaijisse Waaijer

Overview of this book

The increase being seen in data volume today requires distributed systems, powerful algorithms, and scalable cloud infrastructure to compute insights and train and deploy machine learning (ML) models. This book will help you improve your knowledge of building ML models using Azure and end-to-end ML pipelines on the cloud. The book starts with an overview of an end-to-end ML project and a guide on how to choose the right Azure service for different ML tasks. It then focuses on Azure Machine Learning and takes you through the process of data experimentation, data preparation, and feature engineering using Azure Machine Learning and Python. You'll learn advanced feature extraction techniques using natural language processing (NLP), classical ML techniques, and the secrets of both a great recommendation engine and a performant computer vision model using deep learning methods. You'll also explore how to train, optimize, and tune models using Azure Automated Machine Learning and HyperDrive, and perform distributed training on Azure. Then, you'll learn different deployment and monitoring techniques using Azure Kubernetes Services with Azure Machine Learning, along with the basics of MLOps—DevOps for ML to automate your ML process as CI/CD pipeline. By the end of this book, you'll have mastered Azure Machine Learning and be able to confidently design, build and operate scalable ML pipelines in Azure.
Table of Contents (20 chapters)
1
Section 1: Azure Machine Learning
4
Section 2: Experimentation and Data Preparation
9
Section 3: Training Machine Learning Models
15
Section 4: Optimization and Deployment of Machine Learning Models
19
Index

Exploring common techniques for data preparation

After the data experimentation phase, you should have gathered enough knowledge to start preprocessing the data. This process is also often referred to as feature engineering. When coming from multiple sources, such as applications, databases, or warehouses, as well as external sources, your data cannot be analyzed or interpreted immediately.

It is, therefore, of imminent importance to preprocess data before you choose a model to interpret your problem. In addition to this, there are different steps involved in data preparation, which depend on the data that is available to you, such as the problem you want to solve, and with that, the ML algorithms that could be used for it.

You might ask yourself why data preparation is so important. The answer is that the preparation of your data might lead to improvements in model accuracy when done properly. This could be due to the relationships within your data that have been simplified...