Book Image

Applied Unsupervised Learning with Python

By : Benjamin Johnston, Aaron Jones, Christopher Kruger
Book Image

Applied Unsupervised Learning with Python

By: Benjamin Johnston, Aaron Jones, Christopher Kruger

Overview of this book

Unsupervised learning is a useful and practical solution in situations where labeled data is not available. Applied Unsupervised Learning with Python guides you in learning the best practices for using unsupervised learning techniques in tandem with Python libraries and extracting meaningful information from unstructured data. The book begins by explaining how basic clustering works to find similar data points in a set. Once you are well-versed with the k-means algorithm and how it operates, you’ll learn what dimensionality reduction is and where to apply it. As you progress, you’ll learn various neural network techniques and how they can improve your model. While studying the applications of unsupervised learning, you will also understand how to mine topics that are trending on Twitter and Facebook and build a news recommendation engine for users. Finally, you will be able to put your knowledge to work through interesting activities such as performing a Market Basket Analysis and identifying relationships between different products. By the end of this book, you will have the skills you need to confidently build your own models using Python.
Table of Contents (12 chapters)
Applied Unsupervised Learning with Python
Preface

Agglomerative versus Divisive Clustering


Our instances of hierarchical clustering so far have all been agglomerative – that is, they have been built from the bottom up. While this is typically the most common approach for this type of clustering, it is important to know that it is not the only way a hierarchy can be created. The opposite hierarchical approach, that is, built from the top up, can also be used to create your taxonomy. This approach is called Divisive Hierarchical Clustering and works by having all the data points in your dataset in one massive cluster. Many of the internal mechanics of the divisive approach will prove to be quite similar to the agglomerative approach:

Figure 2.15: Agglomerative versus divisive hierarchical clustering

As with most problems in unsupervised learning, deciding the best approach is often highly dependent on the problem you are faced with solving.

Imagine that you are an entrepreneur who has just bought a new grocery store and needs to stock it with...