Book Image

C# 7 and .NET: Designing Modern Cross-platform Applications

By : Mark J. Price, Ovais Mehboob Ahmed Khan
Book Image

C# 7 and .NET: Designing Modern Cross-platform Applications

By: Mark J. Price, Ovais Mehboob Ahmed Khan

Overview of this book

C# is a widely used programming language, thanks to its easy learning curve, versatility, and support for modern paradigms. The language is used to create desktop apps, background services, web apps, and mobile apps. .NET Core is open source and compatible with Mac OS and Linux. There is no limit to what you can achieve with C# and .NET Core. This Learning Path begins with the basics of C# and object-oriented programming (OOP) and explores features of C#, such as tuples, pattern matching, and out variables. You will understand.NET Standard 2.0 class libraries and ASP.NET Core 2.0, and create professional websites, services, and applications. You will become familiar with mobile app development using Xamarin.Forms and learn to develop high-performing applications by writing optimized code with various profiling techniques. By the end of C# 7 and .NET: Designing Modern Cross-platform Applications, you will have all the knowledge required to build modern, cross-platform apps using C# and .NET. This Learning Path includes content from the following Packt products: • C# 7.1 and .NET Core 2.0 - Modern Cross-Platform Development - Third Edition by Mark J. Price • C# 7 and .NET Core 2.0 High Performance by Ovais Mehboob Ahmed Khan
Table of Contents (25 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
16
Designing Guidelines for .NET Core Application Performance
Index

Understanding processes, threads, and tasks


A process, for example, each of the console applications we have created, has resources allocated to it like memory and threads. A thread executes your code, statement by statement. By default, each process only has one thread, and this can cause problems when we need to do more than one task at the same time.

Threads are also responsible for keeping track of things like the currently authenticated user and any internationalization rules that should be followed for the current language and region.

Windows and most other modern operating systems use preemptive multitasking, which simulates the parallel execution of tasks. It divides the processor time among the threads, allocating a time slice to each thread one after another. The current thread is suspended when its time slice finishes. The processor allows another thread to run for a time slice.

When Windows switches from one thread to another, it saves the context of the thread and reloads the previously...