Book Image

Python: Advanced Guide to Artificial Intelligence

By : Giuseppe Bonaccorso, Rajalingappaa Shanmugamani
Book Image

Python: Advanced Guide to Artificial Intelligence

By: Giuseppe Bonaccorso, Rajalingappaa Shanmugamani

Overview of this book

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: • Mastering Machine Learning Algorithms by Giuseppe Bonaccorso • Mastering TensorFlow 1.x by Armando Fandango • Deep Learning for Computer Vision by Rajalingappaa Shanmugamani
Table of Contents (31 chapters)
Title Page
About Packt
Contributors
Preface
19
Tensor Processing Units
Index

Best practices for building and training GANs


For the dataset we selected for this demonstration, the discriminator was becoming very good at classifying the real and fake images, and therefore not providing much of the feedback in terms of gradients to the generator. Hence we had to make the discriminator weak with the following best practices:

  • The learning rate of the discriminator is kept much higher than the learning rate of the generator.
  • The optimizer for the discriminator is GradientDescent and the optimizer for the generator is Adam.
  • The discriminator has dropout regularization while the generator does not.
  • The discriminator has fewer layers and fewer neurons as compared to the generator.
  • The output of the generator is tanh while the output of the discriminator is sigmoid.
  • In the Keras model, we use a value of 0.9 instead of 1.0 for labels of real data and we use 0.1 instead of 0.0 for labels of fake data, in order to introduce a little bit of noise in the labels

You are welcome to explore...