Book Image

Python: Advanced Guide to Artificial Intelligence

By : Giuseppe Bonaccorso, Rajalingappaa Shanmugamani
Book Image

Python: Advanced Guide to Artificial Intelligence

By: Giuseppe Bonaccorso, Rajalingappaa Shanmugamani

Overview of this book

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: • Mastering Machine Learning Algorithms by Giuseppe Bonaccorso • Mastering TensorFlow 1.x by Armando Fandango • Deep Learning for Computer Vision by Rajalingappaa Shanmugamani
Table of Contents (31 chapters)
Title Page
About Packt
Contributors
Preface
19
Tensor Processing Units
Index

Semi-supervised Support Vector Machines (S3VM)


When we discussed the cluster assumption, we also defined the low-density regions as boundaries and the corresponding problem as low-density separation. A common supervised classifier which is based on this concept is a Support Vector Machine (SVM), the objective of which is to maximize the distance between the dense regions where the samples must be. For a complete description of linear and kernel-based SVMs, please refer to Bonaccorso G., Machine Learning Algorithms, Packt Publishing; however, it's useful to remind yourself of the basic model for a linear SVM with slack variables ξi:

This model is based on the assumptions that yi can be either -1 or 1. The slack variables ξi or soft-margins are variables, one for each sample, introduced to reduce the strength imposed by the original condition (min ||w||), which is based on a hard margin that misclassifies all the samples that are on the wrong side. They are defined by the Hinge loss, as follows...