Book Image

Python: Advanced Guide to Artificial Intelligence

By : Giuseppe Bonaccorso, Rajalingappaa Shanmugamani
Book Image

Python: Advanced Guide to Artificial Intelligence

By: Giuseppe Bonaccorso, Rajalingappaa Shanmugamani

Overview of this book

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: • Mastering Machine Learning Algorithms by Giuseppe Bonaccorso • Mastering TensorFlow 1.x by Armando Fandango • Deep Learning for Computer Vision by Rajalingappaa Shanmugamani
Table of Contents (31 chapters)
Title Page
About Packt
Contributors
Preface
19
Tensor Processing Units
Index

Content-based image retrieval


The technique of Content-based Image Retrieval (CBIR) takes a query image as the input and ranks images from a database of target images, producing the output. CBIR is an image to image search engine with a specific goal. A database of target images is required for retrieval. The target images with the minimum distance from the query image are returned. We can use the image directly for similarity, but the problems are as follows:

  • The image is of huge dimensions
  • There is a lot of redundancy in pixels
  • A pixel doesn't carry the semantic information

So, we train a model for object classification and use the features from the model for retrieval. Then we pass the query image and database of targets through the same model to get the features. The models can also be called encoders as they encode the information about the images for the particular task. Encoders should be able to capture global and local features. We can use the models that we studied in the image classification...