Book Image

Python: Advanced Guide to Artificial Intelligence

By : Giuseppe Bonaccorso, Rajalingappaa Shanmugamani
Book Image

Python: Advanced Guide to Artificial Intelligence

By: Giuseppe Bonaccorso, Rajalingappaa Shanmugamani

Overview of this book

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: • Mastering Machine Learning Algorithms by Giuseppe Bonaccorso • Mastering TensorFlow 1.x by Armando Fandango • Deep Learning for Computer Vision by Rajalingappaa Shanmugamani
Table of Contents (31 chapters)
Title Page
About Packt
Contributors
Preface
19
Tensor Processing Units
Index

Conditional probabilities and Bayes' theorem


If we have a probability space S and two events A and B, the probability of A given B is called conditional probability, and it's defined as:

 

As P(A, B) = P(B, A), it's possible to derive Bayes' theorem:

This theorem allows expressing a conditional probability as a function of the opposite one and the two marginal probabilities P(A) and P(B). This result is fundamental to many machine learning problems, because, as we're going to see in this and in the next chapters, normally it's easier to work with a conditional probability in order to get the opposite, but it's hard to work directly from the latter. A common form of this theorem can be expressed as:

Let's suppose that we need to estimate the probability of an event A given some observations B, or using the standard notation, the posterior probability of A; the previous formula expresses this value as proportional to the term P(A), which is the marginal probability of A, called prior probability...