Book Image

Python: Advanced Guide to Artificial Intelligence

By : Giuseppe Bonaccorso, Rajalingappaa Shanmugamani
Book Image

Python: Advanced Guide to Artificial Intelligence

By: Giuseppe Bonaccorso, Rajalingappaa Shanmugamani

Overview of this book

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: • Mastering Machine Learning Algorithms by Giuseppe Bonaccorso • Mastering TensorFlow 1.x by Armando Fandango • Deep Learning for Computer Vision by Rajalingappaa Shanmugamani
Table of Contents (31 chapters)
Title Page
About Packt
Contributors
Preface
19
Tensor Processing Units
Index

Summary


In this chapter, we presented the EM algorithm, explaining the reasons that justify its application in many statistical learning contexts. We also discussed the fundamental role of hidden (latent) variables, in order to derive an expression that is easier to maximize (the Q function).

We applied the EM algorithm to solve a simple parameter estimation problem and afterward to prove the Gaussian Mixture estimation formulas. We showed how it's possible to employ the Scikit-Learn implementation instead of writing the whole procedure from scratch (like in Chapter 2, Introduction to Semi-Supervised Learning).

Afterward, we analyzed three different approaches to component extraction. FA assumes that we have a small number of Gaussian latent variables and a Gaussian decorrelated noise term. The only restriction on the noise is to have a diagonal covariance matrix, so two different scenarios are possible. When we are in the presence of heteroscedastic noise, the process is an actual FA. When...