Book Image

Advanced Python Programming

By : Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis
Book Image

Advanced Python Programming

By: Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis

Overview of this book

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: • Python High Performance - Second Edition by Gabriele Lanaro • Mastering Concurrency in Python by Quan Nguyen • Mastering Python Design Patterns by Sakis Kasampalis
Table of Contents (41 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Useful algorithms and data structures


Algorithmic improvements are especially effective in increasing performance because they typically allow the application to scale better with increasingly large inputs.

Algorithm running times can be classified according to their computational complexity, a characterization of the resources required to perform a task. Such classification is expressed through the Big-O notation, an upper bound on the operations required to execute the task, which usually depends on the input size.

For example, incrementing each element of a list can be implemented using a for loop, as follows:

    input = list(range(10))
    for i, _ in enumerate(input):
        input[i] += 1 

If the operation does not depend on the size of the input (for example, accessing the first element of a list), the algorithm is said to take constant, orO(1), time. This means that, no matter how much data we have, the time to run the algorithm will always be the same.

In this simple algorithm, the...