Book Image

Advanced Python Programming

By : Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis
Book Image

Advanced Python Programming

By: Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis

Overview of this book

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: • Python High Performance - Second Edition by Gabriele Lanaro • Mastering Concurrency in Python by Quan Nguyen • Mastering Python Design Patterns by Sakis Kasampalis
Table of Contents (41 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Rewriting the particle simulator in NumPy


In this section, we will optimize our particle simulator by rewriting some parts of it in NumPy. We found, from the profiling we did in Chapter 1, Benchmarking and Profiling, that the slowest part of our program is the following loop contained in the ParticleSimulator.evolve method:

    for i in range(nsteps): 
      for p in self.particles: 

        norm = (p.x**2 + p.y**2)**0.5 
        v_x = (-p.y)/norm 
        v_y = p.x/norm 

        d_x = timestep * p.ang_vel * v_x 
        d_y = timestep * p.ang_vel * v_y 

        p.x += d_x 
        p.y += d_y 

You may have noticed that the body of the loop acts solely on the current particle. If we had an array containing the particle positions and angular speed, we could rewrite the loop using a broadcasted operation. In contrast, the loop's steps depend on the previous step and cannot be parallelized in this way.

It is natural then, to store all the array coordinates in an array of shape (nparticles, 2...