Book Image

Advanced Python Programming

By : Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis
Book Image

Advanced Python Programming

By: Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis

Overview of this book

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: • Python High Performance - Second Edition by Gabriele Lanaro • Mastering Concurrency in Python by Quan Nguyen • Mastering Python Design Patterns by Sakis Kasampalis
Table of Contents (41 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Summary


In this chapter, we covered three other structural design patterns: flyweight, MVC, and proxy.

We can use flyweight when we want to improve the memory usage and possibly the performance of our application. This is quite important in all systems with limited resources (think of embedded systems), and systems that focus on performance, such as graphics software and electronic games.

In general, we use flyweight when an application needs to create a large number of computationally expensive objects that share many properties. The important point is to separate the immutable (shared) properties from the mutable. We implemented a tree renderer that supports three different tree families. By providing the mutable age and x, y properties explicitly to the render() method, we managed to create only three different objects instead of eighteen. Although that might not seem like a big win, imagine if the trees were 2,000 instead of 18.

MVC is a very important design pattern used to structure an...