Book Image

Advanced Python Programming

By : Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis
Book Image

Advanced Python Programming

By: Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis

Overview of this book

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: • Python High Performance - Second Edition by Gabriele Lanaro • Mastering Concurrency in Python by Quan Nguyen • Mastering Python Design Patterns by Sakis Kasampalis
Table of Contents (41 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Amdahl's Law


How do you find a balance between parallelizing a sequential program (by increasing the number of processors) and optimizing the execution speed of the sequential program itself? For example, which is the better option: Having four processors running a given program for 40% of its execution, or using only two processors executing the same program, but for twice as long? This type of trade-off, which is commonly found in concurrent programming, can be strategically analyzed and answered by applying Amdahl's Law.

Additionally, while concurrency and parallelism can be a powerful tool that provides significant improvements in program execution time, they are not a silver bullet that can speed up any non-sequential architecture infinitely and unconditionally. It is therefore important for developers and programmers to know and understand the limits of the speed improvements that concurrency and parallelism offer to their programs, and Amdahl's Law addresses those concerns.

Terminology...