Book Image

Advanced Python Programming

By : Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis
Book Image

Advanced Python Programming

By: Dr. Gabriele Lanaro, Quan Nguyen, Sakis Kasampalis

Overview of this book

This Learning Path shows you how to leverage the power of both native and third-party Python libraries for building robust and responsive applications. You will learn about profilers and reactive programming, concurrency and parallelism, as well as tools for making your apps quick and efficient. You will discover how to write code for parallel architectures using TensorFlow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. With the knowledge of how Python design patterns work, you will be able to clone objects, secure interfaces, dynamically choose algorithms, and accomplish much more in high performance computing. By the end of this Learning Path, you will have the skills and confidence to build engaging models that quickly offer efficient solutions to your problems. This Learning Path includes content from the following Packt products: • Python High Performance - Second Edition by Gabriele Lanaro • Mastering Concurrency in Python by Quan Nguyen • Mastering Python Design Patterns by Sakis Kasampalis
Table of Contents (41 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Summary


Amdahl's Law offers us a method to estimate the potential speedup in execution time of a task that we can expect from a system when its resources are improved. It illustrates that, as the resources of the system are improved, so is the execution time. However, the differential speedup when incrementing the resources strictly decreases, and the throughput speedup is limited by the sequential overhead of its program.

You also saw that in specific situations (namely, when only the number of processors increases), Amdahl's Law resembles the law of diminishing returns. Specifically, as the number of processors increases, the efficiency gained through the improvement decreases, and the speedup curve flattens out.

Lastly, this chapter showed that improvement through concurrency and parallelism is not always desirable, and detailed specifications are needed for an effective and efficient concurrent program.

With more knowledge of the extent to which concurrency can help to speed up our programs...