Book Image

Getting Started with Python

By : Fabrizio Romano, Benjamin Baka, Dusty Phillips
Book Image

Getting Started with Python

By: Fabrizio Romano, Benjamin Baka, Dusty Phillips

Overview of this book

This Learning Path helps you get comfortable with the world of Python. It starts with a thorough and practical introduction to Python. You’ll quickly start writing programs, building websites, and working with data by harnessing Python's renowned data science libraries. With the power of linked lists, binary searches, and sorting algorithms, you'll easily create complex data structures, such as graphs, stacks, and queues. After understanding cooperative inheritance, you'll expertly raise, handle, and manipulate exceptions. You will effortlessly integrate the object-oriented and not-so-object-oriented aspects of Python, and create maintainable applications using higher level design patterns. Once you’ve covered core topics, you’ll understand the joy of unit testing and just how easy it is to create unit tests. By the end of this Learning Path, you will have built components that are easy to understand, debug, and can be used across different applications. This Learning Path includes content from the following Packt products: • Learn Python Programming - Second Edition by Fabrizio Romano • Python Data Structures and Algorithms by Benjamin Baka • Python 3 Object-Oriented Programming by Dusty Phillips
Table of Contents (31 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
8
Stacks and Queues
10
Hashing and Symbol Tables
Index

Selection algorithms


Selection algorithms fall under a class of algorithms that seek to answer the problem of finding the ith-smallest element in a list. When a list is sorted in ascending order, the first element in the list will be the smallest item in the list. The second element in the list will be the second-smallest element in the list. The last element in the list will be the last-smallest element in the list but that will also qualify as the largest element in the list.

In creating the heap data structure, we have come to the understanding that a call to the pop method will return the smallest element in the heap. The first element to pop off a min heap is the first-smallest element in the list. Similarly, the seventh element to be popped off the min heap will be the seventh-smallest element in the list. Therefore, to find the ith-smallest element in a list will require us to pop the heap i number of times. That is a very simple and efficient way of finding the ith-smallest element...