Book Image

Getting Started with Python

By : Fabrizio Romano, Benjamin Baka, Dusty Phillips
Book Image

Getting Started with Python

By: Fabrizio Romano, Benjamin Baka, Dusty Phillips

Overview of this book

This Learning Path helps you get comfortable with the world of Python. It starts with a thorough and practical introduction to Python. You’ll quickly start writing programs, building websites, and working with data by harnessing Python's renowned data science libraries. With the power of linked lists, binary searches, and sorting algorithms, you'll easily create complex data structures, such as graphs, stacks, and queues. After understanding cooperative inheritance, you'll expertly raise, handle, and manipulate exceptions. You will effortlessly integrate the object-oriented and not-so-object-oriented aspects of Python, and create maintainable applications using higher level design patterns. Once you’ve covered core topics, you’ll understand the joy of unit testing and just how easy it is to create unit tests. By the end of this Learning Path, you will have built components that are easy to understand, debug, and can be used across different applications. This Learning Path includes content from the following Packt products: • Learn Python Programming - Second Edition by Fabrizio Romano • Python Data Structures and Algorithms by Benjamin Baka • Python 3 Object-Oriented Programming by Dusty Phillips
Table of Contents (31 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
8
Stacks and Queues
10
Hashing and Symbol Tables
Index

The strategy pattern


The strategy pattern is a common demonstration of abstraction in object-oriented programming. The pattern implements different solutions to a single problem, each in a different object. The client code can then choose the most appropriate implementation dynamically at runtime.

Typically, different algorithms have different trade-offs; one might be faster than another, but uses a lot more memory, while a third algorithm may be most suitable when multiple CPUs are present or a distributed system is provided. Here is the strategy pattern in UML:

The User code connecting to the strategy pattern simply needs to know that it is dealing with the Abstraction interface. The actual implementation chosen performs the same task, but in different ways; either way, the interface is identical.

A strategy example

The canonical example of the strategy pattern is sort routines; over the years, numerous algorithms have been invented for sorting a collection of objects; quick sort, merge sort...