Book Image

Getting Started with Python

By : Fabrizio Romano, Benjamin Baka, Dusty Phillips
Book Image

Getting Started with Python

By: Fabrizio Romano, Benjamin Baka, Dusty Phillips

Overview of this book

This Learning Path helps you get comfortable with the world of Python. It starts with a thorough and practical introduction to Python. You’ll quickly start writing programs, building websites, and working with data by harnessing Python's renowned data science libraries. With the power of linked lists, binary searches, and sorting algorithms, you'll easily create complex data structures, such as graphs, stacks, and queues. After understanding cooperative inheritance, you'll expertly raise, handle, and manipulate exceptions. You will effortlessly integrate the object-oriented and not-so-object-oriented aspects of Python, and create maintainable applications using higher level design patterns. Once you’ve covered core topics, you’ll understand the joy of unit testing and just how easy it is to create unit tests. By the end of this Learning Path, you will have built components that are easy to understand, debug, and can be used across different applications. This Learning Path includes content from the following Packt products: • Learn Python Programming - Second Edition by Fabrizio Romano • Python Data Structures and Algorithms by Benjamin Baka • Python 3 Object-Oriented Programming by Dusty Phillips
Table of Contents (31 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
8
Stacks and Queues
10
Hashing and Symbol Tables
Index

Runtime analysis


It should be becoming clear that an important aspect to algorithm design is gauging the efficiency both in terms of space (memory) and time (number of operations). This second measure, called runtime performance, is the subject of this section. It should be mentioned that an identical metric is used to measure an algorithm's memory performance. There are a number of ways we could, conceivably, measure run time and probably the most obvious is simply to measure the time the algorithm takes to complete. The major problem with this approach is that the time it takes for an algorithm to run is very much dependent on the hardware it is run on. A platform-independent way to gauge an algorithm's runtime is to count the number of operations involved. However, this is also problematic in that there is no definitive way to quantify an operation. This is dependent on the programming language, the coding style, and how we decide to count operations. We can use this idea, though, of...