Book Image

Getting Started with Python

By : Fabrizio Romano, Benjamin Baka, Dusty Phillips
Book Image

Getting Started with Python

By: Fabrizio Romano, Benjamin Baka, Dusty Phillips

Overview of this book

This Learning Path helps you get comfortable with the world of Python. It starts with a thorough and practical introduction to Python. You’ll quickly start writing programs, building websites, and working with data by harnessing Python's renowned data science libraries. With the power of linked lists, binary searches, and sorting algorithms, you'll easily create complex data structures, such as graphs, stacks, and queues. After understanding cooperative inheritance, you'll expertly raise, handle, and manipulate exceptions. You will effortlessly integrate the object-oriented and not-so-object-oriented aspects of Python, and create maintainable applications using higher level design patterns. Once you’ve covered core topics, you’ll understand the joy of unit testing and just how easy it is to create unit tests. By the end of this Learning Path, you will have built components that are easy to understand, debug, and can be used across different applications. This Learning Path includes content from the following Packt products: • Learn Python Programming - Second Edition by Fabrizio Romano • Python Data Structures and Algorithms by Benjamin Baka • Python 3 Object-Oriented Programming by Dusty Phillips
Table of Contents (31 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
8
Stacks and Queues
10
Hashing and Symbol Tables
Index

Tree nodes


Just as was the case with other data structures that we encountered, such as lists and stacks, trees are built up of nodes. But the nodes that make up a tree need to contain data about the parent-child relationship that we mentioned earlier.

Let us now look at how to build a binary tree node class in Python:

    class Node: 
        def __init__(self, data): 
            self.data = data 
            self.right_child = None 
            self.left_child = None 

Just like in our previous implementations, a node is a container for data and holds references to other nodes. Being a binary tree node, these references are to the left and the right children.

To test this class out, we first create a few nodes:

    n1 = Node("root node")  
    n2 = Node("left child node") 
    n3 = Node("right child node") 
    n4 = Node("left grandchild node") 

Next, we connect the nodes to each other. We let n1 be the root node with n2 and n3 as its children. Finally, we hook n4 as the left child to n2, so...