Book Image

Applied Deep Learning with Keras

By : Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme
Book Image

Applied Deep Learning with Keras

By: Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme

Overview of this book

Though designing neural networks is a sought-after skill, it is not easy to master. With Keras, you can apply complex machine learning algorithms with minimum code. Applied Deep Learning with Keras starts by taking you through the basics of machine learning and Python all the way to gaining an in-depth understanding of applying Keras to develop efficient deep learning solutions. To help you grasp the difference between machine and deep learning, the book guides you on how to build a logistic regression model, first with scikit-learn and then with Keras. You will delve into Keras and its many models by creating prediction models for various real-world scenarios, such as disease prediction and customer churning. You’ll gain knowledge on how to evaluate, optimize, and improve your models to achieve maximum information. Next, you’ll learn to evaluate your model by cross-validating it using Keras Wrapper and scikit-learn. Following this, you’ll proceed to understand how to apply L1, L2, and dropout regularization techniques to improve the accuracy of your model. To help maintain accuracy, you’ll get to grips with applying techniques including null accuracy, precision, and AUC-ROC score techniques for fine tuning your model. By the end of this book, you will have the skills you need to use Keras when building high-level deep neural networks.
Table of Contents (12 chapters)
Applied Deep Learning with Keras
Preface
Preface

Introduction


In this chapter, you will learn how to implement your first neural network using Keras. This chapter covers the basics of deep learning and will provide you with the foundation necessary to build highly complex neural network architectures. We start by extending the logistic regression model to a simple single-layer neural network and then proceed to more complicated neural networks with multiple hidden layers. In this process, you will learn about the underlying basic concepts of neural networks, including forward propagation for making predictions, computing loss, backpropagation for computing derivative of loss with respect to model parameters, and finally gradient descent for learning optimal parameters for the model. You will also learn about the various choices available to build and train a neural network in terms of activation functions, loss functions, and optimizers.

Furthermore, you will learn how to evaluate your model while understanding issues such as overfitting...