Book Image

Applied Deep Learning with Keras

By : Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme
Book Image

Applied Deep Learning with Keras

By: Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme

Overview of this book

Though designing neural networks is a sought-after skill, it is not easy to master. With Keras, you can apply complex machine learning algorithms with minimum code. Applied Deep Learning with Keras starts by taking you through the basics of machine learning and Python all the way to gaining an in-depth understanding of applying Keras to develop efficient deep learning solutions. To help you grasp the difference between machine and deep learning, the book guides you on how to build a logistic regression model, first with scikit-learn and then with Keras. You will delve into Keras and its many models by creating prediction models for various real-world scenarios, such as disease prediction and customer churning. You’ll gain knowledge on how to evaluate, optimize, and improve your models to achieve maximum information. Next, you’ll learn to evaluate your model by cross-validating it using Keras Wrapper and scikit-learn. Following this, you’ll proceed to understand how to apply L1, L2, and dropout regularization techniques to improve the accuracy of your model. To help maintain accuracy, you’ll get to grips with applying techniques including null accuracy, precision, and AUC-ROC score techniques for fine tuning your model. By the end of this book, you will have the skills you need to use Keras when building high-level deep neural networks.
Table of Contents (12 chapters)
Applied Deep Learning with Keras
Preface
Preface

Model Evaluation


In this section, we will move on to multi-layer or deep neural networks while learning about techniques for assessing the performance of a model. As you may have already realized, there are many hyperparameter choices to be made when building a deep neural network. Some very important challenges of applied deep learning are how to find the right values for the number of hidden layers, the number of units in each hidden layer, the type of activation function to use for each layer, the type of optimizer and loss function for training the network, among others. Model evaluation is required for making these decisions. By performing model evaluation, you can say whether a specific deep architecture or a specific set of hyperparameters is working poorly or well on a particular dataset, and therefore decide whether to change them or not.

Furthermore, you will learn about overfitting and underfitting in this section. These are two very important issues that can arise when building...