Book Image

Applied Deep Learning with Keras

By : Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme
Book Image

Applied Deep Learning with Keras

By: Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme

Overview of this book

Though designing neural networks is a sought-after skill, it is not easy to master. With Keras, you can apply complex machine learning algorithms with minimum code. Applied Deep Learning with Keras starts by taking you through the basics of machine learning and Python all the way to gaining an in-depth understanding of applying Keras to develop efficient deep learning solutions. To help you grasp the difference between machine and deep learning, the book guides you on how to build a logistic regression model, first with scikit-learn and then with Keras. You will delve into Keras and its many models by creating prediction models for various real-world scenarios, such as disease prediction and customer churning. You’ll gain knowledge on how to evaluate, optimize, and improve your models to achieve maximum information. Next, you’ll learn to evaluate your model by cross-validating it using Keras Wrapper and scikit-learn. Following this, you’ll proceed to understand how to apply L1, L2, and dropout regularization techniques to improve the accuracy of your model. To help maintain accuracy, you’ll get to grips with applying techniques including null accuracy, precision, and AUC-ROC score techniques for fine tuning your model. By the end of this book, you will have the skills you need to use Keras when building high-level deep neural networks.
Table of Contents (12 chapters)
Applied Deep Learning with Keras
Preface
Preface

Introduction


Deep learning is not only about building neural networks, training them using an available dataset, and reporting the model accuracy. It involves trying to understand your model and the dataset, as well as moving beyond a basic model by improving it in many aspects. In this chapter, you will learn about two very important groups of techniques for improving machine learning models in general, and deep learning models in particular. These techniques are regularization methods and hyperparameter tuning.

Regarding regularization methods, we'll first answer the questions of why we need them and how they help. We'll then introduce two of the most important and most commonly used regularization techniques. You'll learn in great detail about parameter regularization and its two variations, L1 and L2 norm regularizations. You will then learn about a regularization technique, specifically designed for neural networks, called dropout regulation. You will also practice implementing each...