Book Image

Applied Deep Learning with Keras

By : Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme
Book Image

Applied Deep Learning with Keras

By: Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme

Overview of this book

Though designing neural networks is a sought-after skill, it is not easy to master. With Keras, you can apply complex machine learning algorithms with minimum code. Applied Deep Learning with Keras starts by taking you through the basics of machine learning and Python all the way to gaining an in-depth understanding of applying Keras to develop efficient deep learning solutions. To help you grasp the difference between machine and deep learning, the book guides you on how to build a logistic regression model, first with scikit-learn and then with Keras. You will delve into Keras and its many models by creating prediction models for various real-world scenarios, such as disease prediction and customer churning. You’ll gain knowledge on how to evaluate, optimize, and improve your models to achieve maximum information. Next, you’ll learn to evaluate your model by cross-validating it using Keras Wrapper and scikit-learn. Following this, you’ll proceed to understand how to apply L1, L2, and dropout regularization techniques to improve the accuracy of your model. To help maintain accuracy, you’ll get to grips with applying techniques including null accuracy, precision, and AUC-ROC score techniques for fine tuning your model. By the end of this book, you will have the skills you need to use Keras when building high-level deep neural networks.
Table of Contents (12 chapters)
Applied Deep Learning with Keras
Preface
Preface

Other Regularization Methods


In this section, you will learn briefly about some other regularization techniques that are commonly used and have been shown to be effective in deep learning. It is important to keep in mind that regularization is a wide-ranging and active research field in machine learning. As a result, covering all available regularization methods in one chapter is not possible (and most likely not necessary, especially in a book on applied deep learning). Therefore, in this section, we will briefly cover three more regularization methods, called early stopping, data augmentation, and adding noise. You will learn briefly about their underlying ideas, and you'll gain a few tips and recommendations on how to use them.

Early Stopping

We discussed earlier in this chapter that the main assumption in machine learning is that there is a true function/process that produces training examples. However, this process is unknown and there is no explicit way to find it. Not only is there...