Book Image

Architecting Cloud Native Applications

By : Kamal Arora, Erik Farr, John Gilbert, Piyum Zonooz
Book Image

Architecting Cloud Native Applications

By: Kamal Arora, Erik Farr, John Gilbert, Piyum Zonooz

Overview of this book

Cloud computing has proven to be the most revolutionary IT development since virtualization. Cloud native architectures give you the benefit of more flexibility over legacy systems. This Learning Path teaches you everything you need to know for designing industry-grade cloud applications and efficiently migrating your business to the cloud. It begins by exploring the basic patterns that turn your database inside out to achieve massive scalability. You’ll learn how to develop cloud native architectures using microservices and serverless computing as your design principles. Then, you’ll explore ways to continuously deliver production code by implementing continuous observability in production. In the concluding chapters, you’ll learn about various public cloud architectures ranging from AWS and Azure to the Google Cloud Platform, and understand the future trends and expectations of cloud providers. By the end of this Learning Path, you’ll have learned the techniques to adopt cloud native architectures that meet your business requirements. This Learning Path includes content from the following Packt products: • Cloud Native Development Patterns and Best Practices by John Gilbert • Cloud Native Architectures by Erik Farr et al.
Table of Contents (24 chapters)
Title Page
Copyright and Credits
About Packt
Contributors
Preface
Index

Event Streaming


Leverage a fully managed streaming service to implement all inter-component communication asynchronously, whereby upstream components delegate processing to downstream components by publishing domain events that are consumed downstream.

Context, problem, and forces

With cloud-native systems, we want to enable everyday companies and empower self-sufficient full-stack teams to rapidly, continuously, and confidently deliver these global scale systems. Following the reactive principles, these systems should be responsive, resilient, elastic, and message-driven. To this end, cloud-native systems are composed of many bounded isolated components that communicate via asynchronous messaging to increase responsiveness by delegating processing and achieve eventual consistency through the propagation of state change events. Stream processing has become the de facto standard in the cloud for implementing this message-driven inter-component communication.

To create responsive, resilient,...