Book Image

Getting Started with Containerization

By : Dr. Gabriel N. Schenker, Hideto Saito, Hui-Chuan Chloe Lee, Ke-Jou Carol Hsu
Book Image

Getting Started with Containerization

By: Dr. Gabriel N. Schenker, Hideto Saito, Hui-Chuan Chloe Lee, Ke-Jou Carol Hsu

Overview of this book

Kubernetes is an open source orchestration platform for managing containers in a cluster environment. This Learning Path introduces you to the world of containerization, in addition to providing you with an overview of Docker fundamentals. As you progress, you will be able to understand how Kubernetes works with containers. Starting with creating Kubernetes clusters and running applications with proper authentication and authorization, you'll learn how to create high-availability Kubernetes clusters on Amazon Web Services (AWS), and also learn how to use kubeconfig to manage different clusters. Whether it is learning about Docker containers and Docker Compose, or building a continuous delivery pipeline for your application, this Learning Path will equip you with all the right tools and techniques to get started with containerization. By the end of this Learning Path, you will have gained hands-on experience of working with Docker containers and orchestrators, including SwarmKit and Kubernetes. This Learning Path includes content from the following Packt products: • Kubernetes Cookbook - Second Edition by Hideto Saito, Hui-Chuan Chloe Lee, and Ke-Jou Carol Hsu • Learn Docker - Fundamentals of Docker 18.x by Gabriel N. Schenker
Table of Contents (25 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Network firewalling


Docker has always had the mantra of security first. This philosophy had a direct influence on how networking in a single and multihost Docker environment was designed and implemented. Software-defined networks are easy and cheap to create, yet they perfectly firewall containers that are attached to this network from other non-attached containers, and from the outside world. All containers that belong to the same network can freely communicate with each other, while others have no means to do so:

Docker networks

In the preceding image, we have two networks called front and back. Attached to the front network, we have containers c1 and c2, and attached to the back network, we have containers c3 and c4. c1 and c2 can freely communicate with each other, as can c3 and c4. But c1 and c2 have no way to communicate with either c3 or c4, and vice versa.

Now what about the situation where we have an application consisting of three services, webAPIproductCatalog, and database? We...