Book Image

Python Reinforcement Learning

By : Sudharsan Ravichandiran, Sean Saito, Rajalingappaa Shanmugamani, Yang Wenzhuo
Book Image

Python Reinforcement Learning

By: Sudharsan Ravichandiran, Sean Saito, Rajalingappaa Shanmugamani, Yang Wenzhuo

Overview of this book

Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. You'll also work on various datasets including image, text, and video. This example-rich guide will introduce you to deep RL algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore TensorFlow and OpenAI Gym to implement algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many of the recent advancements in RL. By the end of the Learning Path, you will have all the knowledge and experience needed to implement RL and deep RL in your projects, and you enter the world of artificial intelligence to solve various real-life problems. This Learning Path includes content from the following Packt products: • Hands-On Reinforcement Learning with Python by Sudharsan Ravichandiran • Python Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and Rajalingappaa Shanmugamani
Table of Contents (27 chapters)
Title Page
About Packt
Contributors
Preface
Index

Proximal Policy Optimization


Now we will look at another policy optimization algorithm called Proximal Policy Optimization (PPO). It acts as an improvement to TRPO and has become the default RL algorithm of choice in solving many complex RL problems due to its performance. It was proposed by researchers at OpenAI for overcoming the shortcomings of TRPO. Recall the surrogate objective function of TRPO. It is a constraint optimization problem where we impose a constraint—that average KL divergence between the old and new policy should be less than 

. But the problem with TRPO is that it requires a lot of computing power for computing conjugate gradients to perform constrained optimization. 

So, PPO modifies the objective function of TRPO by changing the constraint to a penalty term so that we don't want to perform conjugate gradient. Now let's see how PPO works. We define 

 as a probability ratio between new and old policy. So, we can write our objective function as:

LCPI denotes the conservative...