Book Image

OpenGL Data Visualization Cookbook

Book Image

OpenGL Data Visualization Cookbook

Overview of this book

OpenGL is a great multi-platform, cross-language, and hardware-accelerated graphics interface for visualizing large 2D and 3D datasets. Data visualization has become increasingly challenging using conventional approaches as datasets become larger and larger, especially with the Big Data evolution. From a mobile device to a sophisticated high-performance computing cluster, OpenGL libraries provide developers with an easy-to-use interface to create stunning visuals in 3D in real time for a wide range of interactive applications. This book provides a series of easy-to-follow, hands-on tutorials to create appealing OpenGL-based visualization tools with minimal development time. We will first illustrate how to quickly set up the development environment in Windows, Mac OS X, and Linux. Next, we will demonstrate how to visualize data for a wide range of applications using OpenGL, starting from simple 2D datasets to increasingly complex 3D datasets with more advanced techniques. Each chapter addresses different visualization problems encountered in real life and introduces the relevant OpenGL features and libraries in a modular fashion. By the end of this book, you will be equipped with the essential skills to develop a wide range of impressive OpenGL-based applications for your unique data visualization needs, on platforms ranging from conventional computers to the latest mobile/wearable devices.
Table of Contents (16 chapters)
OpenGL Data Visualization Cookbook
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

Stereoscopic 3D rendering


3D television and 3D glasses are becoming much more prevalent with the latest trends in consumer electronics and technological advances in wearable computing. In the market, there are currently many hardware options that allow us to visualize information with stereoscopic 3D technology. One common format is side-by-side 3D, which is supported by many 3D glasses as each eye sees an image of the same scene from a different perspective. In OpenGL, creating side-by-side 3D rendering requires asymmetric adjustment as well as viewport adjustment (that is, the area to be rendered) – asymmetric frustum parallel projection or equivalently to lens-shift in photography. This technique introduces no vertical parallax and widely adopted in the stereoscopic rendering. To illustrate this concept, the following diagram shows the geometry of the scene that a user sees from the right eye:

The intraocular distance (IOD) is the distance between two eyes. As we can see from the diagram...