Book Image

Python Geospatial Development - Third Edition

By : Erik Westra
Book Image

Python Geospatial Development - Third Edition

By: Erik Westra

Overview of this book

Geospatial development links your data to locations on the surface of the Earth. Writing geospatial programs involves tasks such as grouping data by location, storing and analyzing large amounts of spatial information, performing complex geospatial calculations, and drawing colorful interactive maps. In order to do this well, you’ll need appropriate tools and techniques, as well as a thorough understanding of geospatial concepts such as map projections, datums, and coordinate systems. This book provides an overview of the major geospatial concepts, data sources, and toolkits. It starts by showing you how to store and access spatial data using Python, how to perform a range of spatial calculations, and how to store spatial data in a database. Further on, the book teaches you how to build your own slippy map interface within a web application, and finishes with the detailed construction of a geospatial data editor using the GeoDjango framework. By the end of this book, you will be able to confidently use Python to write your own geospatial applications ranging from quick, one-off utilities to sophisticated web-based applications using maps and other geospatial data.
Table of Contents (20 chapters)
Python Geospatial Development Third Edition
Credits
About the Author
About the Reviewer
www.PacktPub.com
Preface
Index

Core GIS concepts


Working with geospatial data is complicated because you are dealing with mathematical models of the Earth's surface. In many ways, it is easy to think of the Earth as a sphere on which you can place your data. That might be easy, but it isn't accurate—the Earth is more like an oblate spheroid than a perfect sphere. This difference, as well as other mathematical complexities that we won't get into here, means that representing points, lines, and areas on the surface of the Earth is a rather complicated process.

Let's take a look at some of the key GIS concepts you will have to become familiar with as you work with geospatial data.

Location

Locations represent points on the surface of the Earth. One of the most common ways of measuring location is through the use of latitude and longitude coordinates. For example, my current location (as measured by a GPS receiver) is 38.167446 degrees south and 176.234436 degrees east. What do these numbers mean, and how are they useful?

Think...