Book Image

Python Parallel Programming Cookbook

By : Giancarlo Zaccone
Book Image

Python Parallel Programming Cookbook

By: Giancarlo Zaccone

Overview of this book

This book will teach you parallel programming techniques using examples in Python and will help you explore the many ways in which you can write code that allows more than one process to happen at once. Starting with introducing you to the world of parallel computing, it moves on to cover the fundamentals in Python. This is followed by exploring the thread-based parallelism model using the Python threading module by synchronizing threads and using locks, mutex, semaphores queues, GIL, and the thread pool. Next you will be taught about process-based parallelism where you will synchronize processes using message passing along with learning about the performance of MPI Python Modules. You will then go on to learn the asynchronous parallel programming model using the Python asyncio module along with handling exceptions. Moving on, you will discover distributed computing with Python, and learn how to install a broker, use Celery Python Module, and create a worker. You will understand anche Pycsp, the Scoop framework, and disk modules in Python. Further on, you will learnGPU programming withPython using the PyCUDA module along with evaluating performance limitations.
Table of Contents (13 chapters)
Python Parallel Programming Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Introduction


In the previous chapter, we saw how to use threads to implement concurrent applications. This section will examine the process-based approach. In particular, the focus is on two libraries: the Python multiprocessing module and the Python mpi4py module.

The Python multiprocessing library, which is part of the standard library of the language, implements the shared memory programming paradigm, that is, the programming of a system that consists of one or more processors that have access to a common memory.

The Python library mpi4py implements the programming paradigm called message passing. It is expected that there are no shared resources (and this is also called shared nothing) and that all communications take place through the messages that are exchanged between the processes.

For these features, it is in contrast with the techniques of communication that provide memory sharing and the use of lock or similar mechanisms to achieve mutual exclusion. In a message passing code, the...