Book Image

Julia High Performance

By : Avik Sengupta
Book Image

Julia High Performance

By: Avik Sengupta

Overview of this book

Julia is a high performance, high-level dynamic language designed to address the requirements of high-level numerical and scientific computing. Julia brings solutions to the complexities faced by developers while developing elegant and high performing code. Julia High Performance will take you on a journey to understand the performance characteristics of your Julia programs, and enables you to utilize the promise of near C levels of performance in Julia. You will learn to analyze and measure the performance of Julia code, understand how to avoid bottlenecks, and design your program for the highest possible performance. In this book, you will also see how Julia uses type information to achieve its performance goals, and how to use multuple dispatch to help the compiler to emit high performance machine code. Numbers and their arrays are obviously the key structures in scientific computing – you will see how Julia’s design makes them fast. The last chapter will give you a taste of Julia’s distributed computing capabilities.
Table of Contents (14 chapters)

Writing generic library functions with arrays


The suggestions in the previous sections should make your array code fast and high-performance. If you are directly writing code to solve your own problems, this should be enough. However, if you are writing library routines that may be called by other programs, you will need to heed additional concerns. Your function may be called with arrays of different kinds and with different dimensions. To write generic code that is fast with all types and dimensions of arrays, your code needs to be careful in how it iterates over the elements of the arrays.

All Julia arrays are subtypes of the AbstractArray type. All abstract arrays must provide facilities for indexation and iteration. However, these can be implemented very differently for different types of arrays. The default array is DenseArray, which stores its elements in contiguous memory. As discussed before, these elements can be pointers or values, but in either case, they are stored in contiguous...