Book Image

Swift Data Structure and Algorithms

By : Mario Eguiluz Alebicto
Book Image

Swift Data Structure and Algorithms

By: Mario Eguiluz Alebicto

Overview of this book

Apple’s Swift language has expressive features that are familiar to those working with modern functional languages, but also provides backward support for Objective-C and Apple’s legacy frameworks. These features are attracting many new developers to start creating applications for OS X and iOS using Swift. Designing an application to scale while processing large amounts of data or provide fast and efficient searching can be complex, especially running on mobile devices with limited memory and bandwidth. Learning about best practices and knowing how to select the best data structure and algorithm in Swift is crucial to the success of your application and will help ensure your application is a success. That’s what this book will teach you. Starting at the beginning, this book will cover the basic data structures and Swift types, and introduce asymptotic analysis. You’ll learn about the standard library collections and bridging between Swift and Objective-C collections. You will see how to implement advanced data structures, sort algorithms, work with trees, advanced searching methods, use graphs, and performance and algorithm efficiency. You’ll also see how to choose the perfect algorithm for your problem.
Table of Contents (15 chapters)
Swift Data Structure and Algorithms
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface

Trie tree


Until now, we have seen different types of trees, such as binary trees, binary search trees, red-black trees, and AVL trees. In all these types of tree, the content of a node (a value or a key) is not related to the content of a previous node. A single node has a complete meaning, such as a value or number by itself.

But in some scenarios in real life, we need to store a series of data in which those values have common parts; think of it as the suffixes or prefixes in related words, in the alphabet, in a telephone directory.

Here is where a trie tree shines. They are ordered data structures where edges contain part of a key and its descendant nodes have common share part of the previous values. Check this example out:

Trie tree example – storing the words plan, play, poll, post

As you can see in the previous figure, each edge of the tree contains part of a key, and by adding every edge key from the top to a specific node (or leaf), we can build a complete key.

Some implementations...