Book Image

Modern Python Cookbook

Book Image

Modern Python Cookbook

Overview of this book

Python is the preferred choice of developers, engineers, data scientists, and hobbyists everywhere. It is a great scripting language that can power your applications and provide great speed, safety, and scalability. By exposing Python as a series of simple recipes, you can gain insight into specific language features in a particular context. Having a tangible context helps make the language or standard library feature easier to understand. This book comes with over 100 recipes on the latest version of Python. The recipes will benefit everyone ranging from beginner to an expert. The book is broken down into 13 chapters that build from simple language concepts to more complex applications of the language. The recipes will touch upon all the necessary Python concepts related to data structures, OOP, functional programming, as well as statistical programming. You will get acquainted with the nuances of Python syntax and how to effectively use the advantages that it offers. You will end the book equipped with the knowledge of testing, web services, and configuration and application integration tips and tricks. The recipes take a problem-solution approach to resolve issues commonly faced by Python programmers across the globe. You will be armed with the knowledge of creating applications with flexible logging, powerful configuration, and command-line options, automated unit tests, and good documentation.
Table of Contents (18 chapters)
Title Page
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Picking an order for parameters based on partial functions


When we look at complex functions, we'll sometimes see a pattern to the ways we use the function. We might, for example, evaluate a function many times with some argument values that are fixed by context, and other argument values that are changing with the details of the processing.

It can simplify our programming if our design reflects this concern. We'd like to provide a way to make the common parameters slightly easier to work with than the uncommon parameters. We'd also like to avoid having to repeat the parameters that are part of a larger context.

Getting ready

We'll look at a version of the haversine formula. This computes distances between points on the surface of the Earth, using the latitude and longitude coordinates of that point:

c = 2arc sin(√a)

The essential calculation yields the central angle, c, between two points. The angle is measured in radians. We convert it into distance by multiplying by the Earth's mean radius...