Book Image

Modern Python Cookbook

Book Image

Modern Python Cookbook

Overview of this book

Python is the preferred choice of developers, engineers, data scientists, and hobbyists everywhere. It is a great scripting language that can power your applications and provide great speed, safety, and scalability. By exposing Python as a series of simple recipes, you can gain insight into specific language features in a particular context. Having a tangible context helps make the language or standard library feature easier to understand. This book comes with over 100 recipes on the latest version of Python. The recipes will benefit everyone ranging from beginner to an expert. The book is broken down into 13 chapters that build from simple language concepts to more complex applications of the language. The recipes will touch upon all the necessary Python concepts related to data structures, OOP, functional programming, as well as statistical programming. You will get acquainted with the nuances of Python syntax and how to effectively use the advantages that it offers. You will end the book equipped with the knowledge of testing, web services, and configuration and application integration tips and tricks. The recipes take a problem-solution approach to resolve issues commonly faced by Python programmers across the globe. You will be armed with the knowledge of creating applications with flexible logging, powerful configuration, and command-line options, automated unit tests, and good documentation.
Table of Contents (18 chapters)
Title Page
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Handling common doctest issues


Good Python includes docstrings inside every module, class, function, and method. Many tools can create useful, informative documentation from minimally complete docstrings.

One important element of a docstring is an example. The example becomes a kind of unit test case. Doctest does simple, literal matching of the expected output against the actual output. There are some Python objects, however, that are not consistent every time they're referred to.

For example, all object hash values are randomized. This means that the order of elements in a set or the order of keys in a dictionary can vary. We have several choices for creating test case example output:

  • Write tests that can tolerate randomization. Often by converting to a sorted structure.
  • Stipulate a value for the PYTHONHASHSEED environment variable.
  • Require that Python be run with the -R option to disable hash randomization entirely.

There are several other considerations beyond simple variability in the location...