Book Image

Swift 3 Object-Oriented Programming - Second Edition

By : Gaston C. Hillar
Book Image

Swift 3 Object-Oriented Programming - Second Edition

By: Gaston C. Hillar

Overview of this book

Swift has quickly become one of the most-liked languages and developers’ de-facto choice when building applications that target iOS and macOS. In the new version, the Swift team wants to take its adoption to the next level by making it available for new platforms and audiences. This book introduces the object-oriented paradigm and its implementation in the Swift 3 programming language to help you understand how real-world objects can become part of fundamental reusable elements in the code. This book is developed with XCode 8.x and covers all the enhancements included in Swift 3.0. In addition, we teach you to run most of the examples with the Swift REPL available on macOS and Linux, and with a Web-based Swift sandbox developed by IBM capable of running on any web browser, including Windows and mobile devices. You will organize data in blueprints that generate instances. You’ll work with examples so you understand how to encapsulate and hide data by working with properties and access control. Then, you’ll get to grips with complex scenarios where you use instances that belong to more than one blueprint. You’ll discover the power of contract programming and parametric polymorphism. You’ll combine generic code with inheritance and multiple inheritance. Later, you’ll see how to combine functional programming with object-oriented programming and find out how to refactor your existing code for easy maintenance.
Table of Contents (17 chapters)
Swift 3 ObjectOriented Programming - Second Edition
Credits
About the Author
Acknowledgement
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Creating mutable classes


So far, we have worked with different types of properties. When we declare stored instance properties with the var keyword, we create a mutable instance property, which means that we can change their values for each new instance we create. When we create an instance of a class that defines many public-stored properties, we create a mutable object, which is an object that can change its state.

Note

A mutable object is also known as a mutating object.

For example, let's think about a class named MutableVector3D that represents a mutable 3D vector with three public-stored properties: x, y, and z. We can create a new MutableVector3D instance and initialize the x, y, and z attributes. Then, we can call the sum method with the delta values of x, y, and z as arguments. The delta values specify the difference between the existing and new or desired value. So, for example, if we specify a positive value of 30 in the deltaX parameter, it means we want to add 30 to the X value...