Book Image

Mastering the C++17 STL

By : Arthur O'Dwyer
Book Image

Mastering the C++17 STL

By: Arthur O'Dwyer

Overview of this book

Modern C++ has come a long way since 2011. The latest update, C++17, has just been ratified and several implementations are on the way. This book is your guide to the C++ standard library, including the very latest C++17 features. The book starts by exploring the C++ Standard Template Library in depth. You will learn the key differences between classical polymorphism and generic programming, the foundation of the STL. You will also learn how to use the various algorithms and containers in the STL to suit your programming needs. The next module delves into the tools of modern C++. Here you will learn about algebraic types such as std::optional, vocabulary types such as std::function, smart pointers, and synchronization primitives such as std::atomic and std::mutex. In the final module, you will learn about C++'s support for regular expressions and file I/O. By the end of the book you will be proficient in using the C++17 standard library to implement real programs, and you'll have gained a solid understanding of the library's own internals.
Table of Contents (13 chapters)

Const iterators

There's just one more complication to consider, before we abandon this list iterator example. Notice that I quietly changed our count_if function template so that it takes Container& instead of const Container&! That's because the begin() and end() member functions we provided are non-const member functions; and that's because they return iterators whose operator* returns non-const references to the elements of the list. We'd like to make our list type (and its iterators) completely const-correct--that is, we'd like you to be able to define and use variables of type const list_of_ints, but prevent you from modifying the elements of a const list.

The standard library generally deals with this issue by giving each standard container two different kinds of iterator: bag::iterator and bag::const_iterator. The non-const member function...