Book Image

Python High Performance, Second Edition - Second Edition

By : Dr. Gabriele Lanaro
Book Image

Python High Performance, Second Edition - Second Edition

By: Dr. Gabriele Lanaro

Overview of this book

Python is a versatile language that has found applications in many industries. The clean syntax, rich standard library, and vast selection of third-party libraries make Python a wildly popular language. Python High Performance is a practical guide that shows how to leverage the power of both native and third-party Python libraries to build robust applications. The book explains how to use various profilers to find performance bottlenecks and apply the correct algorithm to fix them. The reader will learn how to effectively use NumPy and Cython to speed up numerical code. The book explains concepts of concurrent programming and how to implement robust and responsive applications using Reactive programming. Readers will learn how to write code for parallel architectures using Tensorflow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. By the end of the book, readers will have learned to achieve performance and scale from their Python applications.
Table of Contents (10 chapters)

Reaching optimal performance with numexpr

When handling complex expressions, NumPy stores intermediate results in memory. David M. Cooke wrote a package called numexpr, which optimizes and compiles array expressions on the fly. It works by optimizing the usage of the CPU cache and by taking advantage of multiple processors.

Its usage is generally straightforward and is based on a single function--numexpr.evaluate. The function takes a string containing an array expression as its first argument. The syntax is basically identical to that of NumPy. For example, we can calculate a simple a + b * c expression in the following way:

    a = np.random.rand(10000) 
b = np.random.rand(10000)
c = np.random.rand(10000)
d = ne.evaluate('a + b * c')

The numexpr package increases the performances in almost all cases, but to get a substantial advantage, you should use it with large arrays. An application...