Book Image

Rust High Performance

By : Iban Eguia Moraza
Book Image

Rust High Performance

By: Iban Eguia Moraza

Overview of this book

This book teaches you how to optimize the performance of your Rust code so that it is at the same level as languages such as C/C++. You'll understand and fi x common pitfalls, learn how to improve your productivity by using metaprogramming, and speed up your code. You will master the features of the language, which will make you stand out, and use them to greatly improve the efficiency of your algorithms. The book begins with an introduction to help you identify bottlenecks when programming in Rust. We highlight common performance pitfalls, along with strategies to detect and resolve these issues early. We move on to mastering Rust's type system, which will enable us to optimize both performance and safety at compile time. You will learn how to effectively manage memory in Rust, mastering the borrow checker. We move on to measuring performance and you will see how this affects the way you write code. Moving forward, you will perform metaprogramming in Rust to boost the performance of your code and your productivity. Finally, you will learn parallel programming in Rust, which enables efficient and faster execution by using multithreading and asynchronous programming.
Table of Contents (19 chapters)
Title Page
Copyright and Credits
Dedication
Packt Upsell
Contributors
Preface
Index

Shared pointers


One of Rust's most criticized problems is that it's difficult to develop an application with shared pointers. As we have seen before, it's true that due to Rust's memory safety guarantees, it might be difficult to develop those kinds of algorithms, but as we will see now, the standard library gives us some types we can use to safely allow that behavior.

The cell module

The standard library has one interesting module, the std::cell module, that allows us to use objects with interior mutability. This means that we can have an immutable object and still mutate it by getting a mutable borrow to the underlying data. This, of course, would not comply with the mutability rules we saw before, but the cells make sure this works by checking the borrows at runtime or by doing copies of the underlying data.

Cells

Let's start with the basic Cell structure. A Cell will contain a mutable value, but it can be mutated without having a mutable Cell. It has mainly three interesting methods: set...