Book Image

Java EE 8 Design Patterns and Best Practices

By : Rhuan Rocha, Joao Carlos Purificação
Book Image

Java EE 8 Design Patterns and Best Practices

By: Rhuan Rocha, Joao Carlos Purificação

Overview of this book

Patterns are essential design tools for Java developers. Java EE Design Patterns and Best Practices helps developers attain better code quality and progress to higher levels of architectural creativity by examining the purpose of each available pattern and demonstrating its implementation with various code examples. This book will take you through a number of patterns and their Java EE-specific implementations. In the beginning, you will learn the foundation for, and importance of, design patterns in Java EE, and then will move on to implement various patterns on the presentation tier, business tier, and integration tier. Further, you will explore the patterns involved in Aspect-Oriented Programming (AOP) and take a closer look at reactive patterns. Moving on, you will be introduced to modern architectural patterns involved in composing microservices and cloud-native applications. You will get acquainted with security patterns and operational patterns involved in scaling and monitoring, along with some patterns involved in deployment. By the end of the book, you will be able to efficiently address common problems faced when developing applications and will be comfortable working on scalable and maintainable projects of any size.
Table of Contents (20 chapters)
Title Page
Copyright and Credits
Dedication
Packt Upsell
Contributors
Preface
5
Aspect-Oriented Programming and Design Patterns
Index

Explaining the concept of the integration tier


As discussed in previous chapters, Java EE is divided into three well-known tiers—the presentation tier, the business tier, and the integration tier. These tiers work together to promote solutions with a high level of decoupling.

In a business environment, software development is very difficult as we need to think about the whole ecosystem of the enterprise. An ecosystem includes its data source, software, data politics, security, and devices. Consequently, the developer needs to think about how to read and write data in these data sources, how the software communicates between with each other, how the data policies are implemented on the systems, how the security works on the business environment, and so on. In this case, it would be beneficial to create a tier to resolve all integration and communication problems, because their solutions will be decoupled from business logic. This is the thought process that gave birth to the integration tier...