Book Image

Java EE 8 Design Patterns and Best Practices

By : Rhuan Rocha, Joao Carlos Purificação
Book Image

Java EE 8 Design Patterns and Best Practices

By: Rhuan Rocha, Joao Carlos Purificação

Overview of this book

Patterns are essential design tools for Java developers. Java EE Design Patterns and Best Practices helps developers attain better code quality and progress to higher levels of architectural creativity by examining the purpose of each available pattern and demonstrating its implementation with various code examples. This book will take you through a number of patterns and their Java EE-specific implementations. In the beginning, you will learn the foundation for, and importance of, design patterns in Java EE, and then will move on to implement various patterns on the presentation tier, business tier, and integration tier. Further, you will explore the patterns involved in Aspect-Oriented Programming (AOP) and take a closer look at reactive patterns. Moving on, you will be introduced to modern architectural patterns involved in composing microservices and cloud-native applications. You will get acquainted with security patterns and operational patterns involved in scaling and monitoring, along with some patterns involved in deployment. By the end of the book, you will be able to efficiently address common problems faced when developing applications and will be comfortable working on scalable and maintainable projects of any size.
Table of Contents (20 chapters)
Title Page
Copyright and Credits
Dedication
Packt Upsell
Contributors
Preface
5
Aspect-Oriented Programming and Design Patterns
Index

Summary


In almost every section of this book, we have shown that, besides being solutions to recurrent problems, patterns aim at the reuse of and low coupling between application components. Following this principle, the decomposition of an application into small independent parts that perform intelligent and specific tasks allows this application to evolve in a natural and organized way. These small parts with specific tasks are called microservices, and the method of developing a system based on the decomposition of the application into these small parts is called microservices architecture.

 

However, like any technology, there are pros and cons to this. Developing an application and thinking about the control of the various microservices is a complex task, but once the microservices are well defined, the application is able to evolve much better than a monolithic application. In this way, the maintenance of the application is done more quickly, with the addition of new functionalities...