Book Image

Embedded Systems Architecture

By : Daniele Lacamera
Book Image

Embedded Systems Architecture

By: Daniele Lacamera

Overview of this book

Embedded systems are self-contained devices with a dedicated purpose. We come across a variety of fields of applications for embedded systems in industries such as automotive, telecommunications, healthcare and consumer electronics, just to name a few. Embedded Systems Architecture begins with a bird's eye view of embedded development and how it differs from the other systems that you may be familiar with. You will first be guided to set up an optimal development environment, then move on to software tools and methodologies to improve the work flow. You will explore the boot-up mechanisms and the memory management strategies typical of a real-time embedded system. Through the analysis of the programming interface of the reference microcontroller, you'll look at the implementation of the features and the device drivers. Next, you'll learn about the techniques used to reduce power consumption. Then you will be introduced to the technologies, protocols and security aspects related to integrating the system into IoT solutions. By the end of the book, you will have explored various aspects of embedded architecture, including task synchronization in a multi-threading environment, and the safety models adopted by modern real-time operating systems.
Table of Contents (18 chapters)
Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
Index

Introducing serial communication


All the protocols that we analyze in this chapter manage the access to a serial bus, which may consist of one or more wires, transporting the information in the form of electrical signals corresponding to logic levels, zeros and ones, when associated with specific time intervals. The protocols are different in the way they transmit and receive information on the data bus lines. To transmit a byte, the transceiver encodes it as a bit sequence, which is synchronized with a clock. The logic values of the bit are interpreted by the receiver reading its value on a specific front of the clock, depending on the clock's polarity.

Each protocol specifies the polarity of the clock and the bit order required to transmit the data, which can start with either the most or the least significant bit. For example, a system transmitting the ASCII character D over a serial line regulated by raising clock fronts, with most significant bit first, would produce a signal like the...