Book Image

Embedded Systems Architecture

By : Daniele Lacamera
Book Image

Embedded Systems Architecture

By: Daniele Lacamera

Overview of this book

Embedded systems are self-contained devices with a dedicated purpose. We come across a variety of fields of applications for embedded systems in industries such as automotive, telecommunications, healthcare and consumer electronics, just to name a few. Embedded Systems Architecture begins with a bird's eye view of embedded development and how it differs from the other systems that you may be familiar with. You will first be guided to set up an optimal development environment, then move on to software tools and methodologies to improve the work flow. You will explore the boot-up mechanisms and the memory management strategies typical of a real-time embedded system. Through the analysis of the programming interface of the reference microcontroller, you'll look at the implementation of the features and the device drivers. Next, you'll learn about the techniques used to reduce power consumption. Then you will be introduced to the technologies, protocols and security aspects related to integrating the system into IoT solutions. By the end of the book, you will have explored various aspects of embedded architecture, including task synchronization in a multi-threading environment, and the safety models adopted by modern real-time operating systems.
Table of Contents (18 chapters)
Title Page
Copyright and Credits
Packt Upsell
Contributors
Preface
Index

SPI bus


The serial peripheral interface bus, most commonly known as SPI, provides a different approach, based on master/slave communication. As the name suggests, the interface was initially designed to control peripherals. This reflects on the design, as all the communication is always initiated by the master on the bus. Thanks to the full-duplex pin configuration and the synchronized clock, it may be much faster than asynchronous communication, due to the better robustness to clock skews between the systems sharing the bus. SPI is widely used as a communication protocol for a number of different devices, due to its simple logic and the flexibility given by the fact that the slave does not have to be preconfigured to communicate at a predefined speed that matches the one on the master. Multiple peripherals can share the same bus, as long as media access strategies are defined. A common way for a master to control one peripheral at a time is by using separate GPIO lines to control the slave...