Book Image

Hands-On GPU Programming with Python and CUDA

By : Dr. Brian Tuomanen
Book Image

Hands-On GPU Programming with Python and CUDA

By: Dr. Brian Tuomanen

Overview of this book

Hands-On GPU Programming with Python and CUDA hits the ground running: you’ll start by learning how to apply Amdahl’s Law, use a code profiler to identify bottlenecks in your Python code, and set up an appropriate GPU programming environment. You’ll then see how to “query” the GPU’s features and copy arrays of data to and from the GPU’s own memory. As you make your way through the book, you’ll launch code directly onto the GPU and write full blown GPU kernels and device functions in CUDA C. You’ll get to grips with profiling GPU code effectively and fully test and debug your code using Nsight IDE. Next, you’ll explore some of the more well-known NVIDIA libraries, such as cuFFT and cuBLAS. With a solid background in place, you will now apply your new-found knowledge to develop your very own GPU-based deep neural network from scratch. You’ll then explore advanced topics, such as warp shuffling, dynamic parallelism, and PTX assembly. In the final chapter, you’ll see some topics and applications related to GPU programming that you may wish to pursue, including AI, graphics, and blockchain. By the end of this book, you will be able to apply GPU programming to problems related to data science and high-performance computing.
Table of Contents (15 chapters)

Kernels, Threads, Blocks, and Grids

In this chapter, we'll see how to write effective CUDA kernels. In GPU programming, a kernel (which we interchangeably use with terms such as CUDA kernel or kernel function) is a parallel function that can be launched directly from the host (the CPU) onto the device (the GPU), while a device function is a function that can only be called from a kernel function or another device function. (Generally speaking, device functions look and act like normal serial C/C++ functions, only they are running on the GPU and are called in parallel from kernels.)

We'll then get an understanding of how CUDA uses the notion of threads, blocks, and grids to abstract away some of the underlying technical details of the GPU (such as cores, warps, and streaming multiprocessors, which we'll cover later in this book), and how we can use these notions...